Experimental scattershot boson sampling

نویسندگان

  • Marco Bentivegna
  • Nicolò Spagnolo
  • Chiara Vitelli
  • Fulvio Flamini
  • Niko Viggianiello
  • Ludovico Latmiral
  • Paolo Mataloni
  • Daniel J. Brod
  • Ernesto F. Galvão
  • Andrea Crespi
  • Roberta Ramponi
  • Roberto Osellame
  • Fabio Sciarrino
چکیده

Boson sampling is a computational task strongly believed to be hard for classical computers, but efficiently solvable by orchestrated bosonic interference in a specialized quantum computer. Current experimental schemes, however, are still insufficient for a convincing demonstration of the advantage of quantum over classical computation. A new variation of this task, scattershot boson sampling, leads to an exponential increase in speed of the quantum device, using a larger number of photon sources based on parametric down-conversion. This is achieved by having multiple heralded single photons being sent, shot by shot, into different random input ports of the interferometer. We report the first scattershot boson sampling experiments, where six different photon-pair sources are coupled to integrated photonic circuits. We use recently proposed statistical tools to analyze our experimental data, providing strong evidence that our photonic quantum simulator works as expected. This approach represents an important leap toward a convincing experimental demonstration of the quantum computational supremacy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A detailed study of Gaussian Boson Sampling

Since the development of Boson sampling, there has been a quest to construct more efficient and experimentally feasible protocols to test the computational complexity of sampling from photonic states. In this paper we interpret and extend the results presented in [Phys. Rev. Lett. 119, 170501 (2017)]. We derive an expression that relates the probability to measure a specific photon output patte...

متن کامل

Boson-Sampling with non-interacting fermions

Abstract We explore the conditions under which identical particles in unitary linear networks behave as the other species, i.e. bosons as fermions and fermions as bosons. It is found that the BosonSampling computer of Aaronson & Arkhipov can be implemented in an interference experiment with non-interacting fermions in an appropriately entangled state. Moreover, a scheme is proposed which simula...

متن کامل

Driven Boson Sampling.

Sampling the distribution of bosons that have undergone a random unitary evolution is strongly believed to be a computationally hard problem. Key to outperforming classical simulations of this task is to increase both the number of input photons and the size of the network. We propose driven boson sampling, in which photons are input within the network itself, as a means to approach this goal. ...

متن کامل

Universality of Generalized Bunching and Efficient Assessment of Boson Sampling.

It is found that identical bosons (fermions) show a generalized bunching (antibunching) property in linear networks: the absolute maximum (minimum) of the probability that all N input particles are detected in a subset of K output modes of any nontrivial linear M-mode network is attained only by completely indistinguishable bosons (fermions). For fermions K is arbitrary; for bosons it is either...

متن کامل

Boson sampling for molecular vibronic spectra

Quantum computers are expected to be more efficient in performing certain computations than any classical machine. Unfortunately, the technological challenges associated with building a fullscale quantum computer have not yet allowed the experimental verification of such an expectation. Recently, boson sampling has emerged as a problem that is suspected to be intractable on any classical comput...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2015